作者单位
摘要
中国计量大学 光电材料与器件研究院, 浙江 杭州 310018
随着软玻璃光纤的发展和光纤激光器的进步,越来越多的研究人员采用以软玻璃光纤代替石英光纤的方式,得到高功率中红外超连续谱光源。通过广泛阅读国内外关于氟化物玻璃光纤、硫系玻璃光纤和碲酸盐玻璃光纤等软玻璃光纤产生超连续谱的相关文献,本文综述了近年来利用这三类光纤产生中红外超连续谱光源的研究进展。目前氟化物玻璃光纤在实验中的应用最为广泛,且研发进度较快,获得的中红外超连续谱覆盖范围在2~5 μm,最大输出功率可达30 W;硫系玻璃光纤产生的中红外超连续谱光源带宽可达10 μm以上,但输出功率较低;碲酸盐玻璃光纤由于材料中羟基难以去除,在中红外超连续谱的实验中进展较为缓慢;而氟碲酸盐光纤在近几年发展迅速,可能成为未来中红外超连续谱研究的理想介质。
超连续谱 中红外 软玻璃光纤 非线性光纤 supercontinuum spectrum mid-infrared soft glass fiber nonlinear optical fiber 
发光学报
2024, 45(1): 111
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
“Lotus effect” glass surfaces with fluorinated ethylene propylene were successfully fabricated by using a femtosecond laser-induced backward transfer (LIBT) method. By space-selectively modifying both the surface morphology and surface chemistry in a single step, LIBT provides a convenient and flexible route to fabricate superhydrophobic surfaces with ultralow adhesion. A systematic mechanism responsible for the anisotropic wetting behaviors and adhesion modulation was proposed with a combination of the Cassie and Wenzel models. X-ray photoelectron spectroscopy revealed that oxidation and defluorination were induced by laser radiation. LIBT is proved to be a promising method for programmable manipulations of functional surfaces with diverse wettability.
superhydrophobic surface laser-induced backward transfer fluorinated ethylene propylene glass 
Chinese Optics Letters
2022, 20(4): 043801
夏照远 1,2钱静 1王关德 1沈丹阳 1,2[ ... ]赵全忠 1,2,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800
2 中国科学院大学材料科学与光电子工程中心,北京 100049
金属玻璃是在熔融状态下急速冷却降温形成的新型合金,它具有优异的物理、化学性能,在航空、化工、**等领域具有巨大的应用潜力。金属玻璃的制备工艺已经十分成熟,不同基底以及大尺寸块状金属玻璃的制备已经实现,但其高质高效的加工还面临许多问题。高温、高应变条件下,传统的加工方式容易使金属玻璃发生晶化和氧化,导致材料失去优异性能,使金属玻璃的应用受阻。近年来,随着超快激光器件的成熟,超快激光加工以其热效应小、加工精度高、不容易发生晶化和氧化等特点,为金属玻璃高质高效、低损耗加工提供了可能。同时针对超短脉冲激光与金属玻璃相互作用的机理也有了更加深入的研究。本文主要介绍金属玻璃的特殊性能、超短脉冲激光加工金属玻璃的机理及研究现状,并对超短脉冲激光加工金属玻璃存在的相关问题进行了总结和展望。
激光加工 金属玻璃 飞秒激光 晶化 氧化 
激光与光电子学进展
2021, 58(15): 1516027
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Technology Center, Huagong Laser Engineering Co., Ltd., Wuhan 430000, China
One-step precipitation of Ag nanoparticles in Ag+-doped silicate glasses was achieved through a focused picosecond laser with a high repetition rate. Absorption spectra and transmission electron microscopy (TEM) confirmed that metallic Ag nanoparticles were precipitated within glass samples in the laser-written domain. The surface plasmon absorbance fits well with the experimental absorption spectrum. The nonlinear absorption coefficient β is determined to be 2.47 × 10-14 m/W by fitting the open aperture Z-scan curve, which originated from the intraband transition in the s-p Ag band. The formation mechanism of Ag-glass nanocomposites is discussed as well.
nonlinear optical materials laser materials processing microstructure fabrication 
Chinese Optics Letters
2021, 19(1): 011901
王何宁 1,2钱静 1蒋小波 2,3娄孔昱 1,4[ ... ]赵全忠 1
作者单位
摘要
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
4 上海大学物理学院, 上海 200444
采用高温热熔融法制备了CdTe量子点掺杂的硅酸盐玻璃, 测试了其拉曼、吸收和发射光谱, 验证了量子点掺杂玻璃的量子尺寸效应。在飞秒激光(800 nm和960 nm)激发下, CdTe量子点掺杂玻璃产生了上转换荧光, 证明了其为双光子吸收诱导发光, 发现双光子荧光对激发波长有一定的范围要求, 测得CdTe量子点掺杂玻璃的非线性吸收系数可达3.62×10-11 m/W。
材料 量子点 硅酸盐玻璃 上转换荧光 双光子吸收 
中国激光
2018, 45(10): 1003003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!